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Crystals of the title compound are orthorhombic 
with a = 7.2.5(I), b = 23.95(2), c = 9.09(l) w I space 
group P2 1 21 21 (No. 19). A threedimensional X-ray 
analysis of the structure was made with 2172 reflec- 
tions collected on a Stile Stadi-2 automatic diffracto- 
meter. The structure was solved by conventional 
Patterson and Fourier methods and refined by block- 
diagonal least-squares to a final R of 0.059. The 
[NiN4] coordination polyhedron {Ni-N = 1.8.57(6), 
1.878(9), 1.858(11), and l&8(5) A) is planar, 
with a small tetrahedral twist (nitrogens + 0.05 w 
and the Ni 0.003 A out of the least-squares [N4] 
plane). It is significantly closer to planarity than the 
recently described isomorphous Cu compound. 
Evidence is given that the aliphatic central chelate 
ring is in two-fold disorder with axial methyls - the 
components of the disorder being the two optical 
isomers of the ligand. There is a marginal preference 
for one chiral form of the ligand in the chiral cays- 
tals. 

Introduction 

As part of our study [l-3] of the compounds I 

P r! 

{M = Co, Ni, Cu}, we have determined [l-3] the 
structure of [Ni(abpn)J {I for X = R = R’ = H; and B 
= CH#H(CHs)}. 

*Author for correspondence. Present address: Chemistry 
Department, University of Queensland, Brisbane, Australia, 
4061. 

Since our first solution and refinement of the 
structure, using poor quality photographic data, 
Hall et al. have described [4] the structure of the 
isomorphous [l , 21 copper compound. Thus, in 
describing our results of the refinement with better 
quality data, we compare the Ni and Cu polyhedra, 
and give a different interpretation of the disorder 
that occurs in the aliphatic pn chelate ring. 

Experimental 

Red-brown prisms were obtained from acetone. 
The crystal used for the X-ray analysis had dimen- 
sions 0.28 X 0.51 X 0.69 mm. Crystal Data: Cl,- 
H1,N4Ni, M = 336.1, Orthorhombic, a = 7.25(l), 
b = 23.95(2), c = 9.09(l) A, U = 1578.9 A3, D, = 
1.40 g cmm3 (by flotation ), Z = 4, D, = 1.41 g cmd3, 
F(OOO) = 700. Space group P212121 (No. 19) from 
symmetry and systematic absences. MoKa radiation, 
h = 0.71069 &~.c(Mo-KCY) = 12.34 cm-‘. 

X-ray data with 6.5 < 28 < 50’ were collected 
from a crystal mounted up the c axis on a Stde 
Stadi-2 automatic diffractometer, using graphite 
monochromated MoK~Y radiation. 

Angular step-scan ranges were systematically 
varied to allow for variations in peak-width of the 
different reflections, and a counting time of 1.0 set 
was used for each 0.01” increment of scan. Back- 
ground counts were accumulated for 30 set at each 
extremity of the scan. 

Reflections with intensity I < 30(I) were ignored, 
as were those with background difference A > 3~. 
Corrections were applied for Lorentz and polarisa- 
tion factors and absorption. The (011) reflection 
was eventually removed because of probable extinc- 
tion effects, and the final data set consisted of 2172 
planes. 

The structure was solved by conventional Patter- 
son and Fourier techniques (initially using a poor 
quality set of CuKa photographic data [l]). Block 
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TABLE I. Atomic Positions and Thermal Vibrational Parameters, with Estimated Standard Deviations in Parentheses. 

(a) Atomic positions (X104) and isotropic thermal parameters (A’) 

Atom x/a y/b zlc B 

Ni -1526.2(1.2) 

N(1) -869(8) 

N(2) -3565(17) 

N(3) -2382(12) 

N(4) 506(8) 

C(1) -1707(11) 

C(2) -1046(11) 

C(3) -1913(11) 

C(4) -3508(14) 

C(5) -4164(12) 

C(6) -3310(11) 

C(7) -4136(11) 

C(8)a 4387(14) 

WV -4441(18) 

C(lO)a 

C(81)b 

-3200(25) 

C(Pl)b 

-5141(12) 

-3850(14) 

C(lol)b -2946(26) 

C(l1) -1788(12) 

C(l2) -185(10) 

C(13) 250(12) 

C(14) 1756(12) 

C(15) 2930(11) 

C(16) 2551(10) 

C(17) 941(P) 

(b) Anisotropic thermal parametersC (X104) 

-967.1(0.3) -329.3(0.9) 

-1413(2) 1258(6) 

-1418(3) -788(P) 

-502(4) -1816(14) 

-509(2) 3P(6) 
-1860(3) 1818(7) 

-2120(3) 3131(8) 

-2580(3) 3742(P) 

-2813(3) 3032(P) 

-2582(3) 1766(10) 

-2099(3) 1143(8) 

-1868(3) -135(P) 

-1252(3) -2242(P) 

-61 l(3) -2348(8) 

-1486(S) -3507(10) 

-1113(4) -1704(15) 

-783(4) -2723(9) 

-1186(8) -3832(13) 

-14(3) -2238(10) 

247(3) -1667(8) 

784(3) -2211(P) 

1073(3) -1706(P) 

816(3) -629(P) 

281(3) -94(8) 

-13(3) -566(7) 

4.65 

5.07 

4.71 

5.07 

6.46 

5.07 

4.71 

6.46 

Atom brr bzz bss b2s brs bra 

Ni 155.4(1.2) lS(O.1) 93.2(0.8) 2.3(0.7) -55.8(2.4) -5.5(0.9) 

N(1) 188(12) 16(l) llP(8) 23(S) -106(7) -16(6) 

N(4) 177(11) 16(l) 107(8) 11(4) -80(16) -22(6) 

C(1) 208(16) 14(l) 95(7) -5(S) -33(21) -l(8) 
C(2) 247(19) 17(l) 118(P) 12(6) -30(22) -8(8) 
C(3) 231(19) 19(l) 141(11) 8(7) 49(24) -2(P) 
C(4) 266(19) lP(1) 163(11) 10(7) 70(33) -3(11) 

C(5) 249(19) 18(l) 168(13) l(7) 45(28) -21(P) 

C(6) 193(15) 16(l) 128(P) -12(6) 0(23) -18(8) 

C(7) 253(18) 20(l) 147(12) 2(7) -89(26) -38(P) 

C(l1) 228(20) 230) 178(13) 43(8) -129(29) -21(11) 

C(12) 156(13) 18(l) 117(P) 20(6) 4(19) 4(7) 
C(13) 246(18) 18(l) 134(10) 18(6) 71(25) 10(8) 
C(14) 231(18) lP(1) 158(11) l(6) 149(26) 3(P) 
C(15) 240(18) 20(l) 148(12) -4(6) 64(24) -23(8) 

C(16) 200(15) 20(l) 124(11) -2(6) -1(21) -25(8) 

C(17) 159(12) 17(l) 9P(8) -l(5) 16(17) 6(6) 

?hese were refined, together with N(2), as a group of four atoms with idealised, fixed geometry. The refined population para- 
meter for the three carbon atoms was 0.546. bThese were refined, together with N(3), as a fixed geometry group. The refined 
population parameter for the three carbon atoms was 0.454. 

k2bz2 + 12b33 + klb 
‘The expression for the temperature factor is: exp[-(h2brl + 

23 +hlb13 +hkbl2)1. 

diagonal least-squares refinement of the positional Accordingly, the three carbon atoms of this 
and isotropic thermal parameters of all non-hydrogen chelate ring were omitted, and a difference Fourier 
atoms led to unreal bondlengths and angles in the was obtained. This showed elongated peaks of 
aliphatic pn chelate ring. electrondensity which could readily be rationalised 
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assuming a two-fold disorder of the atoms of the pn 
chelate ring as shown in II. 

N 
N 

The two CHaCH(CHa) components of II have 
opposite chirality, so this model is consistent with 
the use of the racemic ligand in the preparations. 

Hall et al. [4], in their analysis of the Cu iso- 
morph, chose to interpret the disorder differently: 
allowing large thermal motions for a single three- 
atom component of the one chirality. Such 
spontaneous resolution has been known since Pasteur 
[S] , but is rare, and we have now disproved it here by 
running circular dichroism spectra of an acetone solu- 
tion obtained from a single crystal of the Ni com- 
pound. The optical activity was barely detectable and 
consistent with a small preference for one compo- 
nent of II (see below) but not with total spontaneous 
resolution. 

For the further refinement then we calculated two 
idealised four-atom groups: (N(2), C(8), C(9), C(10)) 
and (C(8 l), C(9 l), C(lOl), N(3)}. The C-C distances 
were fixed at 1.54 A and the C-N at 1.50 A. All 
atoms of the calculated groups fitted within the 
observed electron-density. 

Allowing anisotropic thermal parameters for the 
nickel, and allowing the relative populations of the 
three-atom groups to vary, whilst constraining the 
isotropic temperature parameters of related carbons 
to be equal, reduced R to 0.073. The refined popula- 
tions of the carbon atoms of the disorder groups 
were, respectively, 0.56 and 0.44. 

The use of (i) anisotropic thermal parameters for 
the non-hydrogen atoms, except those of the disorder 
groups; (ii) non-unit weights with Whkr = I Fhkl I/15 
for I Fhkl I > 15, otherwise w = 1; and (iii) anomalous 
dispersion corrections for all atoms (both Af’ and 
Af”) gave relative populations of 0.55 and 0.45 and 
a final R of 0.059. 

Hydrogen atoms were not observed in final differ- 
ence Fourier syntheses using either the full data set, 
or only the reflections with sine/A < 0.3. Thus they 
were not included in the analysis. These difference 
Fouriers showed no features > 10.2 leK3 in the 
region of the disordered pn chelate ring, and none > 
10.5 leK3 in the remainder of the unit cell. 

The final atomic parameters are given in Table I. 
Scattering factors and correction parameters were 

taken from International Tables for X-ray Crystallo- 
graphy (Vol. IV, 1974). Programmes used are part of 
the Sheffield X-ray system. Calculations were per- 

Fig. 1. The molecular geometry of 1,2-bis(2-imino-benzyli- 
deneimino)propanenickel(II) and atom labelling: the atoms 
of the disorder component of major occupancy are shown. 

formed on the Sheffield University ICL 1907 
computer. Observed and calculated structure factors 
are listed in a table available from the Editor. 

Circular dichroism measurements were made on a 
CNRS-RousselJouane Dichrographe III with an 
acetone solution (-lo4 M) prepared from one crys- 
tal of [Ni(abpn)] . 

Results and Discussion 

The molecular geometry is shown in Fig. 1, 
together with the atom labelling scheme. (The latter 
is the same as that of ref. 4). 

Details of bond-lengths and angles are in Table II, 
and the relevant equations of least-squares planes and 
interplanar angles are listed in Table III. 

The four Ni-N bond-lengths are identical within 
experimental error: mean = 1.865 A. This compares 
with the different values [3] in [Ni(abtn)] {l for X = 
R = R’ = H; and B = CH2CH2CH2} of 1.860 for 
N(l)/N(4) and 1.923 for N(2)/N(3). We had 
previously suggested that these differences were a 
result of the different characters of nitrogens as 
anionic and neutral ligands. However, it now seems 
that they may owe more to the steric effects of dif- 
ferent chelate ring size. 

The M-N distances for [Ni(abpn)] are distinctly 
less than the 1.91 W (av) observed for the 
isomorphous Cu compound [4], and the Ni 
compound is closer to planarity. [For the latter, 
compare the data of Table III here with that in Table 
V of ref. 4. For example, the angles between the 
o-iminobenzylideneimino planes are 13’ for Ni and 
15.2’ for Cu, and the Ni compound has a marginally 
smaller tetrahedral twist than the Cu] . 

The methyl substituents are axial - probably 
constrained there by crystal-packing forces, although 
there is no reason to suspect significant steric 
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TABLE II. Interatomic Distances and Angles with Estimated Standard Deviations in Parentheses. 

(a) Co-ordination Sphere of the Metal 

(i) Bond lengths (A) 

Ni-N(1) 1.857(6) Ni-N(3) 
Ni-N( 2) 1.878(9) Ni-N(4) 

(ii) Bond angles c) 

N(l)-Ni-N(2) 92.5(3) N(2)-Ni-N(3) 
N(l)-Ni-N(3) 174.5(4) N(2)-Ni-N(4) 
N(l)-Ni-N(4) 89.8(2) N(3)-Ni-N(4) 

(b) The Ligand 

(i) Bond lengths (A) 

W)-W) 
C(l)Jx9 
C(l)W(6) 
~(2~3) 
C(3W(4) 
C(4)-C(5) 
W)-c(6) 
C(6)WG’) 
NWX’) 
N(2)-CW) 

(ii) Bond angles (“) 

Ni-N(l)<(l) 

N(l)-C(l)-C(2) 
N(l)-W&W) 
C(2)-c(l)-c(6) 
C(l)-C(2)X(3) 
WW(3)--C(4) 
C(3)W(4)~(5) 
C(4)-c(5tc(6) 
C(5)-c(6tc(7) 
U5)-c(6rC(1) 
C(l)HX6)-U7) 
N(2)-C(7tC(6) 
Ni-N(2)<(7) 
Ni-N(2)<(8) 
Ni-N(2)<(81) 

C(7)-N(2)--C(8) 
C(7)-N(2)<(81) 

1.33(l) 
1.43(l) 
1.43(l) 
1.38(l) 
1.44(l) 
1.36(l) 
1.43(l) 
1.42(l) 
1.30(l) 
1.59(l) 

129.9(S) 
121.1(6) 
121.9(6) 
117.0(6) 
122.0(7) 
119.6(7) 
120.2(8) 
120.8(8) 
117.2(7) 
120.4(7) 
122.4(7) 
124.3(8) 
128.9(7) 
110.8(6) 
114.7(7) 
119.7(8) 
113.1(8) 

N(4)-C(l7) 
C(17)-C(16) 

C(17)-c(l2) 
C(16)-C(lS) 
C(15)<(14) 
C(14)-C(13) 

C(l3HXl2) 
C(12)-c(ll) 

N(3)--C(ll) 
N(3tC(9) 

Ni-N(4)-C(17) 

N(4>C(l7)4(16) 
N(4tC(l7tc(l2) 
C(12)-C(l7)-C(l6) 
C(17)-C(l6)-c(l5) 
C(16)&C(15)-C(l4) 
C(15)-c(14)-c(13) 
C(14)X(13)XX12) 
C(13)-c(12)-C(17) 
c(ll)-C(l2)-C(13) 
c(1l)-C(l2)-c(17) 
N(3)-C(l ltc(12) 
Ni-N(3)-C(ll) 
Ni-N(3)-C(9) 
Ni-N(3)-C(91) 
C(ll)-N(3)<(9) 
C(1 l)-N(3)-C(91) 

1.858(11) 
1.868(5) 

85.4(4) 
177.5(3) 

92.4(4) 

1.34(l) 
1.43(l) 
1.43(l) 
1.40(l) 
1.44(l) 
1.37(l) 
1.41(l) 
1.42(l) 
1.30(1) 
1.59(l) 

129.0(S) 
120.2(6) 
122.4(6) 
117.4(6) 
120.5(7) 
120.9(7) 
118.9(7) 
121.3(7) 
120.9(6) 
117.1(7) 
122.1(7) 
123.9(8) 
129.9(8) 
115.9(7) 
111.6(7) 
111.6(9) 
118.2(9) 

TABLE Ill. Equations to Some Least-squares Planes Given in the Form IX + m Y + nZ = d (where X, Y, and Z are coordinates in 
A referred to the axes a, b, and c). Deviations (A) of the various atoms from these planes are given in square brackets. 

I m n d 

Plane (1): N(1)-(4) 
0.5563 -0.5354 -0.6355 -0.7837 

[Ni -0.031, N(1) 0.050, N(2) -0.051, N(3) 0.052, N(4) -0.050, C(1) 0.138, c(2) 0.297, c(3) 0.410, c(4) 0.344, c(5) 
0.172, C(6) 0.088, C(7) -0.021, C(8) -0.346, C(9) 0.435, C(10) -1.857, C(11) 0.195, C(12) 0.212, C(13) 0.411, 
C(14) 0.465, C(15) 0.284, C(16) 0.061, C(17) 0.060, C(81) 0.446, C(91) -0.240, C(101) -1.763) 

(continued on facing page) 
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I m n d 

Plane (2): 

Plane (3): 

Plane (4): 

Plane (5): 

Plane (6): 

Plane (7): 

Plane (8): 

Ni, NW, N(2) 
-0.5750 0.5554 0.6007 0.8295 

[C(l) -0.061, C(4) -0.207), C(6) -0.043, C(7) 0.0041 

Ni, N(3), N(4) 
-0.5356 0.5 144 0.6697 0.7991 

[C(ll) -0.114, C(12) -0.160, C(14) -0.400, C(17) -0.0731 

N(l), C(lH7h N(2) 
-0.5798 0.5896 0.5624 0.9602 

[N(l) 0.026, N(2) -0.054, C(1) 0.018, C(2) -0.009, C(3) -0.036, C(4) -0.013, C(5) 0.033, C(6) 0.027, C(7) 
0.008, Ni -0.068, C(14) -0.8651 

N(3), C(1lH17), N(4) 
0.5500 -0.4276 -0.7174 -0.7458 

[N(3) -0.003, N(4) 0.049, C(ll) -0.015, C(12) -0.015, C(13) 0.007, C(14) 0.031, c(15) 0.002, C(16) -0.045, 
C(17) -0.012, Ni 0.150, C(4) 1.2421 

C(l H6) 
0.5898 -0.5981 -0.5427 -1.0358 

[C(l) 0.000, C(2) -0.007, C(3) 0.006, C(4) 0.003, C(5) -0.011, C(6) 0.009, C(7) 0.063, Ni 0.141, N(1) 0.005, N(2) 
0.141, N(3) 0.440, N(4) O.lll] 

C(l2Hl7) 
-0.5481 0.4115 0.7282 0.7809 

[C(l2) 0.006, C(13) 0.010, C(14) -0.011, C(15) -0.004, C(16) 0.019, Ni -0.217, N(1) -0.567, N(2) -0.279, N(3) 
-0.031, N(4) -0.105, C(17) -0.0191 

Ni, N(2), N(3) 
0.5532 -0.5003 -0.6661 -0.7457 

[C(8) -0.351, C(9) 0.373, C(10) -1.874, C(81) 0.443, C(91) -0.297, C(101) -1.8141 

Angles between planes (‘) 

(2)i3) 5.1 (1H6) 6.7 
(4H5) 167.0 (lH7) 171.1 

(l)i4) 174.6 (2)-(4) 3.0 
(l)i5) 7.8 (3H5) 174.3 

(6)i7) 164.7 

problems for this conformation in such a four-co- 
planar molecule. 

The model used for the disorder, to which we were 
led by our first observation of the difference Fourier 
map, appears to be largely confirmed by a circular 
dichroism experiment. This showed that a solution 
prepared from a single crystal of the compound had 
a barely detectable optical activity, which was consis- 
tent with a partial, but far from complete, resolu- 
tion of optical isomers in the crystal. That is, it was 
consistent with our refined model of non-equal 
populations of the disorder groups. However, because 
of the artificial constraints imposed in the refine- 
ment, we place qualitative rather than quantitative 
significance on the refined population parameters. 

Since the molecule’s oblique-puckered (umbrella) 
shape is not perfectly symmetrical {cf: planes (4) 
and (5) in Table III} the two optical isomers of the 
compound will experience different strains in the 
chiral crystals. Thus it is not surprising that a small 
partial resolution should occur. {The strain comes 
[4] from associating a gauche conformation of the 
central aliphatic chelate ring with an oblique rather 
than a parallel-puckered [6] conformation of the 
whole molecule}. 

In our 1974 discussion [3] of the structure of 
[Ni(abtn)] , we presented our view that the observed 
conformation in these species is probably imposed 
by crystal-packing constraints. We have little further 
to add in maintaining this view other than to note 
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a recent paper [7] on the spectra of [Co(abpn)]. References 
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A marked difference was found between water and 1 
non-aqueous solvents. We think this may reflect the 
adoption of different conformations in the different 2 

media. 
3 
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